Inhibition of cytochrome p450 enzymes by the e- and z-isomers of norendoxifen.
نویسندگان
چکیده
Aromatase catalyzes the conversion of testosterone to estradiol and is the main source of endogenous estrogen in postmenopausal women. Aromatase inhibitors (AIs) are used to treat postmenopausal women with hormone receptor-positive breast cancer. Norendoxifen [4-(1-(4-(2-aminoethoxy)phenyl)-2-phenylbut-1-en-1-yl)phenol], an active metabolite of the selective estrogen receptor modulator tamoxifen, has been shown to be a potent competitive AI, with an IC50 of 90 nM. To obtain data relevant to the clinical use of norendoxifen, the primary objective of this study was to investigate norendoxifen's inhibitory capability on enzymes related to drug-drug interactions. We determined the inhibitory ability of norendoxifen against important drug-metabolizing cytochrome P450 enzymes, including CYP1A2, CYP2A6, CYP3A4, CYP3A5, and CYP2C19, to establish the potency of norendoxifen as a potential cause of drug-drug interactions. A second objective was to determine the effects of E- and Z-norendoxifen on the inhibition of these enzymes to further characterize the isomers' selectivity. The inhibitory abilities of E-, mixed, and Z-norendoxifen against recombinant aromatase (CYP19), CYP1A2, CYP3A4, CYP3A5, and CYP2C19 were tested using microsomal incubations. Mixed norendoxifen inhibited these enzymes with Ki values of 70 ± 9, 76 ± 3, 375 ± 6, 829 ± 62, and 0.56 ± 0.02 nM, respectively. E-Norendoxifen had a 9.3-fold-higher inhibitory ability than Z-norendoxifen against CYP19, while E- and Z-norendoxifen had similar potencies against CYP1A2, CYP3A4, CYP3A5, and CYP2C19. These results suggest that norendoxifen is able to act as a potent AI, and that its E-isomer is 9.3-fold more potent than the Z-isomer.
منابع مشابه
Dmd052506 1715..1720
Aromatase catalyzes the conversion of testosterone to estradiol and is the main source of endogenous estrogen in postmenopausal women. Aromatase inhibitors (AIs) are used to treat postmenopausal women with hormone receptor–positive breast cancer. Norendoxifen [4‐(1‐(4‐(2‐aminoethoxy)phenyl)-2‐phenylbut‐1‐en‐ 1‐yl)phenol], an active metabolite of the selective estrogen receptor modulator tamoxif...
متن کاملInvestigating the Lethal Effects of Lead Chloride (PbCl2) on Blood Indices, Liver Enzymes and Evaluation on Cytochrome P450 Gene Expression in Common Carp (Cyprinus carpio)
The aim of this study was to investigate the sub-lethal effects Lead Chloride (PbCl2) on blood indices, liver enzymes, cytochrome P450 gene expression in common carp. For this purpose, Fish with a mean weight of 7 33±0.33 g were prepared and divided into 3 treatments and a control group and exposed to effective concentrations (0.05, 0.15, 0.25 mg / l) of sublethal toxicity for a period of 14 da...
متن کاملEvaluation of lentinan effects on cytochrome P450 activity in rats by a cocktail method
Objective(s): In this study, a cocktail of probe drugs was used to assess whether lentinan could influence the activities of rat enzymes CYP3A4, CYP2D6, CYP1A2, CYP2C19, and CYP2C9 in vivo. Materials and Methods: Fourteen days after intraperitoneal injection of lentinan, rats were given an oral dose of a cocktail solution containing phenacetin, tolbutamide, omeprazole, metoprolol, and midazolam...
متن کاملCloning and gene expression of cytochrome P450 gene from Alcanivorax borkumensis Bacterium
Alcanivorax borkumensis is a marine bacterium that has ability to grow on limited substrates that mainly is alkanes. The ability to use wide range of hydrocarbons is advantage of this bacterium to other marine community bacteria. A. borkumensis have two genetic systems for alkane biodegradation. The First system is alkane hydroxylase (alk-B1and alk-B2) and the second system is...
متن کاملCloning and gene expression of cytochrome P450 gene from Alcanivorax borkumensis Bacterium
Alcanivorax borkumensis is a marine bacterium that has ability to grow on limited substrates that mainly is alkanes. The ability to use wide range of hydrocarbons is advantage of this bacterium to other marine community bacteria. A. borkumensis have two genetic systems for alkane biodegradation. The First system is alkane hydroxylase (alk-B1and alk-B2) and the second system is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 41 9 شماره
صفحات -
تاریخ انتشار 2013